๐Ÿ† ์ž๊ฒฉ์ฆ, ์–ดํ•™ 42

[๋น…๋ฐ์ดํ„ฐ ๋ถ„์„๊ธฐ์‚ฌ] ์ œ 8ํšŒ ๋น…๋ถ„๊ธฐ ์‹ค๊ธฐ ํ•ฉ๊ฒฉ ํ›„๊ธฐ ๋ฒผ๋ฝ์น˜๊ธฐ ๊ณต๋ถ€๋ฐฉ๋ฒ• ๊ฟ€ํŒ

์‚ฌ์ง„ ์‚ญ์ œ ์‚ฌ์ง„ ์„ค๋ช…์„ ์ž…๋ ฅํ•˜์„ธ์š”.๋น…๋ฐ์ดํ„ฐ ๋ถ„์„๊ธฐ์‚ฌ ๋น…๋ถ„๊ธฐ 8ํšŒ ํ•ฉ๊ฒฉ ํ–ˆ์Šต๋‹ˆ๋‹ค!4์‹œ์— ๊ฒฐ๊ณผ ๋‚˜์˜ค์ž๋งˆ์ž ๋“ค์–ด๊ฐ”๋Š”๋ฐ ๋Œ€๊ธฐ๊ฐ€ 240๋ช… ์ •๋„ ์žˆ๋”๋ผ๊ตฌ์š” ๋‘๊ทผ ๊ฑฐ๋ฆฌ๋Š” ๋งˆ์Œ์œผ๋กœ ๊ธฐ๋‹ค๋ ธ๋Š”๋ฐ ์•„๋ž˜์— (์‚ฌ์ „์ ์ˆ˜)ํ•ฉ๊ฒฉ์ด ๋ณด์˜€์Šต๋‹ˆ๋‹ค๊ฒฐ๊ณผ๋Š”..!!๋Œ€ํ‘œ์‚ฌ์ง„ ์‚ญ์ œ์‚ฌ์ง„ ์„ค๋ช…์„ ์ž…๋ ฅํ•˜์„ธ์š”.ํ•ฉ๊ฒฉ์ž…๋‹ˆ๋‹ค!!๊ทผ๋ฐ 3์œ ํ˜•(์ด 6๋ฌธ์ œ)์—์„œ 2๊ฐœ ํ‹€๋ ธ๋„ค์š”์Œ.. ํšŒ๊ท€๊ณ„์ˆ˜์˜ ํ‰๊ท ์„ ๊ตฌํ•˜๋Š” ๋ฌธ์ œ๋Š” ์ƒ์ˆ˜ํ•ญ์„ ๋นผ๋จน๊ณ  ๊ตฌํ•ด์„œ ํ™•์‹คํžˆ ํ‹€๋ฆฐ๊ฒŒ ๋งž์ง€๋งŒ ํ•˜๋‚˜๋Š” ๋ญ๊ฐ€ ํ‹€๋ ธ์„๊นŒ ๊ณ ๋ฏผํ•ด๋ดค๋”๋‹ˆ์ €๋Š” ์ƒ์ˆ˜ํ•ญ์„ ์ถ”๊ฐ€ํ•ด์„œ ๊ฒฐ์ •๊ณ„์ˆ˜๋ฅผ ๊ตฌํ–ˆ๋Š”๋ฐ ์•„๋งˆ ๊ทธ ๋ฌธ์ œ๊ฐ€ ํ‹€๋ฆฐ๊ฒŒ ์•„๋‹๊นŒ ์‹ถ๋„ค์š”์ค‘๊ฐ„์— ํŒ์—…์ฐฝ์œผ๋กœ ๊ณต์ง€๊ฐ€ ๋‚˜์™”๋Š”๋ฐ ์ €๋Š” ๋ณ„๊ฑฐ ์•„๋‹ˆ๊ฒ ๊ฑฐ๋‹ˆ ํ•˜๊ณ  ์•ˆ ์ฝ๊ณ  ๋‹ซ์•˜๊ฑฐ๋“ ์š”, ๊ทผ๋ฐ ๊ทธ๊ฒŒ ์ƒ์ˆ˜ํ•ญ๊ณผ ๊ด€๋ จ๋œ ์–˜๊ธฐ์˜€์—ˆ์Šต๋‹ˆ๋‹ค ์–ด๋–ค ๋ฌธ์ œ๊ฐ€ ๋‚˜์™”๋Š”์ง€ ์•Œ๊ณ  ์‹ถ์œผ์‹  ๋ถ„๋“ค์€ ์•„๋ž˜ ๋งํฌ๋กœ ๊ณ ๊ณ ์ด๋ฏธ์ง€ ์ธ๋„ค์ผ ์‚ญ์ œ๋น…๋ฐ์ด..

[๋น…๋ฐ์ดํ„ฐ ๋ถ„์„๊ธฐ์‚ฌ] ๋น…๋ถ„๊ธฐ ์‹ค๊ธฐ 8ํšŒ ํ›„๊ธฐ, ๋ณต์›๋ฌธ์ œ, ๋ฐ์ดํ„ฐ, ์˜ˆ์ƒ ๋‹ต์•ˆ ์ฝ”๋“œ

24๋…„ 6์›” 22์ผ์— ๋น…๋ถ„๊ธฐ 8ํšŒ๋ฅผ ๋ณด๊ณ  ์™”์Šต๋‹ˆ๋‹ค!์›๋ž˜๋Š” ๋ฌธ์ œ ๊นŒ๋จน๊ธฐ ์ „์— ๊ธฐ๋กํ•ด์„œ ์˜ฌ๋ฆฌ๋ ค๊ณ  ํ–ˆ๋Š”๋ฐ ๊ธˆ์š”์ผ๋‚  ๋ฐค์ƒˆ์„œ ๋งˆ์ง€๋ง‰์œผ๋กœ ์ฝ”๋“œ ๋ณต์Šตํ•˜๊ณ  ํ† ์š”์ผ์— ์‹œํ—˜๋ณด๊ณ  ์™€์„œ ์“ฐ๋Ÿฌ์ ธ ์ž๋А๋ผ ์ด์ œ์•ผ ์˜ฌ๋ฆฌ๋„ค์š”๋Œ€ํ‘œ์‚ฌ์ง„ ์‚ญ์ œ์‚ฌ์ง„ ์„ค๋ช…์„ ์ž…๋ ฅํ•˜์„ธ์š”. ํ›„๊ธฐ๋ถ€ํ„ฐ ๋งํ•˜์ž๋ฉด ์ €๋Š” ์‰ฌ์› ์Šต๋‹ˆ๋‹ค! ๋ชจ๋ฅด๋Š” ๋ฌธ์ œ ํ•˜๋‚˜๋„ ์—†์ด ์ „๋ถ€ ํ’€์—ˆ์Šต๋‹ˆ๋‹ค! ๊ทผ๋ฐ ๊ฐ€์ฑ„์  ํ•ด๋ณด๋‹ˆ 3์œ ํ˜•์— ์†Œ๋ฌธ์ œ ํ•˜๋‚˜ ํ‹€๋ฆฐ๊ฑฐ ๊ฐ™์•„์š”, ๊ทธ๋ž˜๋„ 1์œ ํ˜• 2์œ ํ˜• ๋‹ค ๋งž์•„์„œ 70์ ์œผ๋กœ ํ•ฉ๊ฒฉ์€ ๋ณด์žฅ๋œ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค๋ฐ์ดํ„ฐ ๋งˆ๋‹˜ ๊ธฐ์ถœ ๋ณต์›์— ๋น„ํ•˜๋ฉด ์ง„~~์งœ ์‰ฌ์› ์–ด์š” ใ…‹ใ…‹ใ…‹.. ๊ณต๋ถ€๊ธฐ๊ฐ„์€ ๋”ฑ 7์ผ์ด์—ˆ์Šต๋‹ˆ๋‹ค 7์ผ ๊ณต๋ถ€ํ•œ๊ฒƒ์น˜๊ณค ์ •๋ง ์‰ฝ๊ฒŒ ๋‚˜์™”์Šต๋‹ˆ๋‹ค ์™œ๋ƒ? ์ผ๋‹จ 1์œ ํ˜•์— ์‹œ๊ฐ„๋ฌธ์ œ ์•ˆ ๋‚˜์˜ค๊ธธ ๋นŒ์—ˆ๋Š”๋ฐ ์•ˆ ๋‚˜์™”์Šต๋‹ˆ๋‹ค ์ด๊ฒŒ ์ œ์ผ ๊นŒ๋‹ค๋กœ์› ๊ฑฐ๋“ ์š”...7์›” 5์ผ์— ๊ฐ€์ฑ„์  ๊ฒฐ๊ณผ ๋‚˜์˜ค๋Š”๋ฐ ํ•ฉ๊ฒฉํ•˜๋ฉด 7์ผ๋งŒ์— ํ•ฉ๊ฒฉ..

[๋น…๋ฐ์ดํ„ฐ ๋ถ„์„๊ธฐ์‚ฌ] ์‹ค๊ธฐ - 3์œ ํ˜• ์นด์ด์ œ๊ณฑ๊ฒ€์ •

์นด์ด์ œ๊ณฑ์€ ์ ํ•ฉ์„ฑ ๊ฒ€์ •๊ณผ ๋…๋ฆฝ์„ฑ ๊ฒ€์ •์„ ๋ฌผ์–ด๋ณด๋Š”๋ฐ ์†”์งํžˆ ์ ํ•ฉ์„ฑ ๊ฒ€์ •์€ ๋‚˜์˜ฌ ํ™•๋ฅ ์ด ์ ์–ด ๋ณด์—ฌ์„œ ๋นผ๊ณ  ์™ธ์šฐ๊ฒ ์Œ..์‹œํ—˜๊นŒ์ง€ ๋‚จ์€ ์‹œ๊ฐ„ ๋‹จ 9์‹œ๊ฐ„!! ์•ˆ๋˜๋Š”๊ฑด ์žฌ๋ผ์ž# ์ ํ•ฉ์„ฑ ๊ฒ€์ •from scipy.stats import chisquarestatistic,pvalue=chisquare(f_obs=f_obs,f_exp=f_exp) # ๋…๋ฆฝ์„ฑ ๊ฒ€์ •from scipy.stats import chi2_contigencystatistic, pvalue, dof, expected = chi2_contigency(df)#๋ฐ์ดํ„ฐ ํ˜•ํƒœ๊ฐ€ ๋‹ค๋ฅผ ๊ฒฝ์šฐtable=pd.crosstab(df['์นผ๋Ÿผ1'],df['์นผ๋Ÿผ2'])

[๋น…๋ฐ์ดํ„ฐ ๋ถ„์„๊ธฐ์‚ฌ] ์‹ค๊ธฐ - 3์œ ํ˜• ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„

๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„์„ ๋งŒ๋‚ฌ์„๋•# ๋…๋ฆฝ๋ณ€์ˆ˜, ์ข…์†๋ณ€์ˆ˜ ํ• ๋‹นx=df.drop(coloumns=['์นผ๋Ÿผ๋ช…1') ํ˜น์€ x=df[['์นผ๋Ÿผ๋ช…1','์นผ๋Ÿผ๋ช…2','์นผ๋Ÿผ๋ช…3']]y=df['์นผ๋Ÿผ๋ช…'] statsmodels ๊ณผ sklearn ๋ฐฉ์‹์ค‘ ๋ฌด์—‡์œผ๋กœ ํ’€์ง€ ์„ ํƒ# sklearn๋กœ ํ‘ธ๋Š” ๋ฐฉ์‹import pandas as pdimport numpy as nnpfrom stats.linear_model import LogisticRegressionmodel=LogisticRegression(penalty=None) #None์„ ๊ผญ ๋„ฃ์–ด์•ผํ•จmodel.fit(x,y)np.round(model.coef_,2) # ํšŒ๊ท€๊ณ„์ˆ˜ # statsmodels๋กœ ํ‘ธ๋Š” ๋ฐฉ์‹import pandas as pdimport numpy as npim..

[๋น…๋ฐ์ดํ„ฐ ๋ถ„์„๊ธฐ์‚ฌ] ์‹ค๊ธฐ - 3์œ ํ˜• ๋‹ค์ค‘ํšŒ๊ท€๋ถ„์„, ์ƒ๊ด€๋ถ„์„

๋ฌธ์ œ์—์„œ ๋‹ค์ค‘ํšŒ๊ท€๋ถ„์„์„ ํ•œ๋‹ค๊ณ  ๋‚˜์™”๋‹ค๋ฉด# x=๋…๋ฆฝ๋ณ€์ˆ˜, y=์ข…์†๋ณ€์ˆ˜ ํ• ๋‹นx=df[['์นผ๋Ÿผ๋ช…1','์นผ๋Ÿผ๋ช…2','์นผ๋Ÿผ๋ช…3']] ํ˜น์€ x=df.drop(columns=['์นผ๋Ÿผ๋ช…'])y=df['์นผ๋Ÿผ๋ช…'] ๊ทธ ๋‹ค์Œ์— sklearn์ด๋ž‘ statsmodel๋กœ ํ’€์ง€ ๊ณ ๋ฏผํ•ด์•ผ ํ•œ๋‹ค#sklearn ํ’€์ด ๋ฐฉ์‹import pandas as pdimport numpy as npfrom sklearn.linear_model import LinearRegressionmodel=LinerRegression()result=model.fit(x,y)๊ฒฐ์ •๊ณ„์ˆ˜=model.score(x,y)ํšŒ๊ท€๊ณ„์ˆ˜=model.coef_ #statsmodels ํ’€์ด ๋ฐฉ์‹import pandas as pdimport numpy as npimport statsm..