๐Ÿ† ์ž๊ฒฉ์ฆ, ์–ดํ•™

[๋น…๋ฐ์ดํ„ฐ ๋ถ„์„๊ธฐ์‚ฌ] ์‹ค๊ธฐ 7ํšŒ - 3์œ ํ˜• ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„

๋ฐ์ดํ„ฐํŒ์Šค 2024. 8. 21. 18:01

 

๋ฌธ์ œ

**train ๋ฐ์ดํ„ฐ๋กœ target์„ ์ข…์†๋ณ€์ˆ˜๋กœ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ฅผ ์ง„ํ–‰ํ•  ๋•Œ age ์ปฌ๋Ÿผ์˜ ์˜ค์ฆˆ๋น„๋ฅผ ๊ตฌํ•˜์—ฌ๋ผ**

 

ใ…‡ ใ….. 3์œ ํ˜• ์ฝ”๋“œ ๊ทธ๋Œ€๋กœ ๋”ฐ๋ผ๊ฐ€๋ฉด ๋ ์ค„ ์•Œ์•˜๋Š”๋ฐ ๋ฌธ์ œ๊ฐ€ ์•ˆ ํ’€๋ฆผ.. coef ๊ฐ’์ด ๋‹ค๋ฆ„ ์™œ..?

 

 

statsmodels ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์ด์šฉ

import statsmodels.api as sm

train=df.iloc[:210].reset_index(drop=True)
test=df.iloc[210:].reset_index(drop=True)

x=train.drop(columns=['target'])
y=train['target']

x=sm.add_constant(x)
model2=sm.Logit(y,x).fit()
summary=model2.summary()
print(summary)

result3=np.exp(-0.0056)
print(result3)
 

๋‹ต : 0.9944156507715979 (์ •๋‹ต)

 

 

import pandas as pd
import numpy as np
import statsmodels.api as sm

train = df.iloc[:210].reset_index(drop=True)
test = df.iloc[210:].reset_index(drop=True)

print(x.info())

# ์ข…์†๋ณ€์ˆ˜์™€ ๋…๋ฆฝ๋ณ€์ˆ˜ ์„ค์ •
x = train.drop('target', axis=1)
y = train['target']

from sklearn.linear_model import LogisticRegression
model=LogisticRegression(penalty=None)
model.fit(x,y)

print(np.round(model.coef_,4))
result=np.exp(model.coef_[0,0])
print(result)
 

๋‹ต:0.9576080077754119

 

์• ์ดˆ์— coef_ ๊ฐ’์ด ๋‘˜์ด ๋‹ค๋ฅด๊ฒŒ ๋‚˜์˜ด.. ์™œ..?

์ด๊ฑธ๋กœ ์‹œ๊ฐ„์„ ํ•œ์‹œ๊ฐ„ ๋„˜๊ฒŒ ์žก์•„๋จน์Œ ใ… ใ… ... ์ด๋”ฐ๊ฐ€ ํ’€์ดํ•  ์˜ˆ์ •

์ผ๋‹จ ๋‹ค๋ฅธ ๋ฌธ์ œ๋ถ€ํ„ฐ ํ’€์ž

 

 


๋ณ€์ˆ˜๊ฐ€ ๋‹ค์–‘ํ•ด์ง€๋ฉด์„œ ๋‚˜์˜ค๋Š” ์˜ค๋ฅ˜ ์˜€์Œ..

์‹œํ—˜์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์˜ค๋ฅ˜๊ฐ€ ๋‚˜์˜ค์ง€ ์•Š๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ๋‚˜์˜ค๊ฒ ์ง€