๐Ÿ† ์ž๊ฒฉ์ฆ, ์–ดํ•™

[๋น…๋ฐ์ดํ„ฐ ๋ถ„์„๊ธฐ์‚ฌ] ์‹ค๊ธฐ - 2์œ ํ˜• ๋ชจ๋ธ ์„ฑ๋Šฅํ‰๊ฐ€ ํ•จ์ˆ˜, ํ•ด์„

๋ฐ์ดํ„ฐํŒ์Šค 2024. 8. 20. 17:56

 

๋ชจ๋ธ๋ง ๋ฐ ์„ฑ๋Šฅํ‰๊ฐ€

1. ๋ถ„๋ฅ˜ : RandomForestClassifier

Accuracy

auc : roc ์ปค๋ธŒ ์•„๋ž˜์ชฝ ๋ฉด์ ์„ ๋œปํ•จ, 1์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ์„ฑ๋Šฅ์ด ์ข‹์Œ

f1 : ํด์ˆ˜๋ก ์„ฑ๋Šฅ์ด ์ข‹์Œ

from	sklearn.metrics	import	accuracy_score,	f1_score,	roc_auc_score,	recall_score,	precision_score 
#	(์‹ค์ œ๊ฐ’,	์˜ˆ์ธก๊ฐ’)
#	๋‹ค์ค‘๋ถ„๋ฅ˜์ผ	๊ฒฝ์šฐ	f1	=	f1_score(y_val,	y_pred,	average	=	'macro') 
auc	=	roc_auc_score(y_val,	y_pred)
acc	=	accuracy_score(y_val,	y_pred)	
f1	=	f1_score(y_val,	y_pred)	
 

 

2. ํšŒ๊ท€ : RandomForestRegressor

R2(๊ฒฐ์ •๊ณ„์ˆ˜) : ๊ฐ’์ด ํด์ˆ˜๋ก ์„ฑ๋Šฅ์ด ์ข‹์Œ

MSE: ๊ฐ’์ด ๋‚ฎ์„์ˆ˜๋ก ์„ฑ๋Šฅ์ด ์ข‹์Œ

RMSE : mse์— ๋ฃจํŠธ๋ฅผ ์”Œ์šด ๊ฐ’

from	sklearn.metrics	import	mean_squared_error,	r2_score
mse	=	mean_squared_error(y_val,	y_pred)	
r2	=	r2_score(y_val,	y_pred)